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Analysis of stochastic processes governed by the Langevin equation is discussed. The
analysis is based on a general method for non-parametric estimation of deterministic and
random terms of the Langevin equation directly from given data. Separate estimation of the
terms corresponds to the decomposition of process dynamics into deterministic and random
components. Part I of the paper presented several possibilities for qualitative and quantitative
analysis of process dynamics based on such decomposition. In Part II, some of these analysis
possibilities are applied to experimental datasets from metal cutting and laser-beam welding.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Most experimental data are to some extent noisy. Data can be noisy due to either the
measurement procedure or the process generating the data. In the former case, the noise is
superimposed on the measured data and uncorrelated to the process dynamics, while in the
latter case the noise represents a constitutive part of the process dynamics, and the process is
therefore stochastic. In Part I of this paper [1], analysis of stochastic processes with
uncorrelated Gaussian noise was discussed. Such processes can be modelled by the Langevin
equation, in which the temporal evolution of a process is determined by a sum of deterministic
and random terms. The deterministic term usually describes the global dynamics of the
process, whereas the random term describes some kind of environmental noise or noisy input
which a!ects the process state but does not a!ect the process parameters. It was shown in
Part I [1] as to how both the deterministic and random terms can be estimated from data and
analyzed. The aim here is to apply these analysis methods to analyze experimental data from
metal cutting and laser-beam welding. Metal cutting is an example in which the deterministic
and random terms of the Langevin equation can be related quite reasonably to the actual
physical phenomena involved in the process. For laser-beam welding, such relations are not
easy to establish. However, the analysis methods presented in reference [1] can nevertheless
be used to extract relevant information about the process dynamics from stochastic data.

2. ANALYSIS OF EXPERIMENTAL DATA

2.1. METAL CUTTING

The dynamics of metal cutting involve various non-linear phenomena such as material
#ow and fracture, friction between the tool and the workpiece, coupled vibrations of
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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a machine}tool}workpiece structure, etc. When a cutting process is modelled on
a macroscopic scale as a mechanical oscillatory system, the dynamics of the cut material can
be treated as a source of random in#uence on a deterministic process. Assuming that these
in#uences are uncorrelated and Gaussian, the dynamics of metal cutting can be modelled by
the Langevin equation in which the deterministic and random terms describe the
deterministic machine}tool}workpiece dynamics and the random in#uences of the cut
material respectively.

In machining literature, two dynamically di!erent cutting regimes are roughly
distinguished: chatter-free cutting and cutting accompanied by chatter. Chatter denotes
self-excited large-amplitude vibration of the machine}tool}workpiece structure. As an
unfavorable cutting regime, chatter has been studied intensively. Analyses of non-linear
models of a cutting process have revealed that the transition from chatter-free cutting to
chatter corresponds to a sub-critical Hopf bifurcation from a stable "xed point to a stable
limit cycle [2, 3]. These analytical results have been con"rmed experimentally [4]. As
shown in reference [5] and below, evidence in favor of such a description of chatter onset
can also be obtained by time-series analysis using the methods discussed in reference [1].

As an example of a cutting process, turning on a lathe was chosen where a rotating
workpiece is cut by a "xed tool. The experimental set-up is illustrated schematically in
Figure 1. A dynamometer was used to measure #uctuations of the cutting force F. The
signals were sampled at a frequency of 100 kHz and each contained 220 000 data points.
Details of the experiments can be found elsewhere [5].

Chatter-free and chatter-cutting regimes were achieved by varying the cutting depth
a while keeping the rest of the cutting parameters constant. Portions of the cutting force
#uctuations recorded in the two cutting regimes are shown in Figure 2. In the chatter-free
regime, the cutting force F

�
#uctuated erratically with occasional bursts of high-frequency

periodic oscillations (Figure 2(a)), whereas in the chatter regime pronounced periodic
#uctuations of the cutting force were observed with a dominant frequency markedly lower
than in the chatter-free regime (Figure 2(b)).

The deterministic and random components of cutting dynamics, h and G, were estimated
in a two-dimensional phase space reconstructed from the recorded time series of the cutting
component F

�
of F using the delay co-ordinates, x (t)"(F

�
(t!�), F

�
(t)). The delay � was

chosen as the time where the autocorrelation function decays to 1/e, as suggested in
Figure 1. Experimental set-up for turning.



Figure 2. Portions of the recorded cutting force #uctuations: (a) chatter-free regime, a"0)3mm; (b) chatter
regime, a"1mm. Note the di!erence in the scales of the two "gures.

Figure 3. Estimated terms h and G in the chatter-free cutting regime: (a) deterministic term h shown as a vector
"eld with two reconstructed deterministic trajectories superimposed; (b) random term G shown as a "eld of
parallelograms. x (t)"(F

�
(t!0)1ms), F

�
(t)).
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reference [6]. In the chatter-free regime, arrows in the vector "eld of h point on average in
the clockwise direction and indicate spiralling motion towards a stable "xed point located
close to the center of the phase space (Figure 3(a)). Both reconstructed deterministic
trajectories superimposed on the "eld start from the edge of the phase portrait, follow spiral
paths, and terminate at a "xed point. Stability analysis of the "xed point based on
approximation of h by a third order polynomial yields eigenvalues of the Jacobian matrix
s
���

+!2)6$11i, which con"rm that the "xed point is a stable focus. Cutting force
#uctuations in chatter-free cutting can therefore be described as random #uctuations
around a stable "xed point. Parallelograms in the "eld of G have a similar size and
orientation across the entire phase space (Figure 3(b)), indicating constant amplitude of
noise. Parallelograms at the edge of the phase space have di!erent shapes and sizes,
presumably because of the statistically poor estimate of G in that region.



Figure 4. Estimated h and G in the chatter-cutting regime. (a) Deterministic term h shown as a vector "eld with
two reconstructed deterministic trajectories superimposed; (b) random term G shown as a "eld of parallelograms.
x(t)"(F

�
(t!0)85ms), F

�
(t)).
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In the chatter regime, arrows in the vector "eld of h indicate motion on a stable
non-symmetric limit cycle (Figure 4(a)). The reconstructed trajectories superimposed on the
"eld start from the center and the edge of the phase portrait, respectively, and both
terminate in a limit cycle. These results suggest that cutting force #uctuations in the chatter
regime can be described as random #uctuations around a stable limit cycle.

Furthermore, the path of the trajectory starting from the center of the phase space and
the arrows inside the limit cycle also reveal that an unstable "xed point might be located in
the vicinity of the center. Using a third order polynomial approximation of h, eigenvalues
s
���

+0)2$1)7i are obtained at the "xed point, which con"rms that it is unstable. More
detailed inspection of the "eld of h reveals that arrows in the left region of the phase space
are aligned almost in parallel to the limit cycle, indicating low local dissipation. In the
opposite region of the phase portrait, and arrows are inclined strongly towards the limit
cycle, an indication of high local dissipation. These two portions of the limit cycle
correspond to the tool motion away from and towards the workpiece respectively. Di!erent
local dissipations in these two regions presumably result from the dependence of damping
on the relative direction of the tool motion with respect to the workpiece. Parallelograms in
the "eld of G di!er in size and shape according to the location in phase space (Figure 4(b)).
Large parallelograms are found in the upper right region of the phase portrait
corresponding to the instants of minimum contact between the tool and the workpiece.
Small parallelograms occupy the lower left region of the phase portrait which corresponds
to the instants of maximal penetration of the tool into the workpiece. Between these two
regions, the average orientation of parallelograms in G changes from horizontal to vertical
and vice versa.

Comparison of the estimated deterministic terms of the two cutting regimes shows that
a transition from the chatter-free to the chatter regime in fact represents a transition from
a stable "xed-point attractor to a stable limit-cycle attractor with an embedded unstable
"xed point. Such a change of attractors is indeed typical of the Hopf bifurcation [7].

When analyzing experimental data, the correct forms of the deterministic and random
terms are usually not known. One way to examine the validity of the estimated h and G is to
verify their convergence as time step � in the conditional moments is decreased [1]. For the
chatter-cutting regime, the dependence of components of h and G on the time step � is



Figure 5. Dependence of estimated terms in chatter regime on time step �. Cross-sections of the terms at
x
�
+0)1 are shown: (a) component of the deterministic term h; (b) component of the random term G.

x(t)"(F
�
(t!0)85ms), F

�
(t)).
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illustrated in Figure 5. The estimates of the deterministic term h remain relatively
unchanged for �)0)2ms (Figure 5(a)), which means that �)0)2ms is the maximum time
step providing a reliable estimate of h. Estimates of the random term G have on average
a similar shape for �)0)05ms (Figure 5(b)), but their value changes as � is further
decreased. The lack of convergence of the random term indicates that the noise may not
be uncorrelated as assumed in the Langevin equation. Similar results are obtained for the
chatter-free regime (not shown), except that the maximum acceptable time step for the
estimation of h is �"0)1ms.

2.2. LASER-BEAM WELDING

Laser-beam welding is a joining technique in which the components to be joined are
locally melted by a laser beam. The physical phenomena taking place in the pool of molten
material, such as heat conduction, melting, evaporation, and solidi"cation of material, #uid
#ow, generation of plasma, etc., determine the dynamics of laser-beam welding [8, 9]. By
varying the power density supplied to the workpiece by the laser beam, various welding
regimes can be achieved. In the present study, two regimes of CO

�
-laser-beam welding are

considered: deep and shallow-penetration welding. High power densities are required for
deep-penetration welding. The energy supplied to the workpiece causes intense
vaporization of the material, such that a capillary known as a keyhole is created in the
molten pool [8, 9]. The keyhole enables deeper penetration of the laser beam into the
material, which deepens the molten pool. Shallow-penetration welding occurs at lower
power densities, where the material vaporization is less intense and no keyhole is formed.
The penetration depth of the laser beam is therefore considerably smaller, and the molten
pool shallower.

Although both welding regimes are technologically useful, deep penetration welding has
mainly been studied [8}10]. However, comparison of analytical and experimental results is
hindered by experimental di$culties involved in measurements of the physical quantities
meaningfully related to process dynamics. The most common measurement is of
#uctuations in the intensity of light emitted by the welding process at a certain wavelength
[10, 11]. The recorded signals are usually noisy, and severe "ltering has been suggested to
make them suitable for analysis by methods of deterministic chaos [10]. Experimental
analysis of welding dynamics is also motivated by the need for reliable monitoring of the
process. One example of a monitoring task of practical relevance is the detection of
a transition from deep- to shallow-penetration welding [11].



Figure 6. Experimental set-up for CO
�
-laser-beam welding.
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Our aim here is to use the methods presented in reference [1] to analyze the light intensity
#uctuations recorded in the two welding regimes. Due to the multitude and complex
interplay of physical phenomena occurring in laser-beam welding, the relationships
between the phenomena and the terms of the Langevin equation are di$cult to establish.
Nevertheless, it is shown below that such an analysis can shed some light on the physical
properties of the laser-welding by dynamics, as well as provide a possible solution of the
aforementioned monitoring task.

The experimental set-up for the CO
�
-laser-beam welding of steel workpieces is shown

schematically in Figure 6. A photo diode was used to detect #uctuations of light intensity
I emitted by the welding process at a wavelength of 540$10 nm. The signals were sampled
at a frequency of 45 kHz and each contained 180 000 data points. Details about the
experiments can be found in reference [12].

Deep- and shallow-penetration welding regimes were achieved by varying the focus
position f

�
of the laser beam while keeping other process parameters constant. Portions of

the light intensity #uctuations recorded in the two welding regimes are shown in Figure 7.
In deep-penetration welding, irregular, random-like #uctuations of light intensity I were
observed (Figure 7(a)). The occasional dramatic increases ofI followed by signi"cant drops
presumably correspond to the keyhole activity and plasma e!ects in the molten pool. These
spiky patterns skew the amplitude distribution of the intensity #uctuations (not shown). In
shallow-penetration welding, irregular #uctuations of light intensity are interspersed with
short segments of distinct periodic oscillations (Figure 7(b)). Events related to the keyhole
activity cannot be observed.

The deterministic and random components of laser-beam welding dynamics, h and G,
were estimated in a two-dimensional phase space reconstructed from the recorded time
series of light intensity #uctuations using the delay coordinates [6], x (t)"(I(t!�), I(t)).
Again, the delay � was chosen as the time where the autocorrelation function decays to 1/e.
In deep-penetration welding, the arrows in h point on average towards a "xed point at
x+(0)5, 0)5) (Figure 8(a)). The reconstructed deterministic trajectories superimposed on the
"eld all start at the edge of the phase portrait and, without spiralling, terminate at this "xed
point. Using a third order polynomial approximation of h, the "xed point is found to be
a stable node, s

�
+!2)5 and s

�
+!4)6. One concludes that the light intensity #uctuations

in the deep-penetration welding regime can be described as random #uctuations around
a stable node.

Parallelograms in the "eld of G di!er signi"cantly in size, indicating that noise amplitude
is not constant across the phase portrait. Disregarding the parallelograms at the edge of the
phase portrait, the noise amplitude increases with the distance from the lower left corner of



Figure 7. Portions of light intensity time series: (a) deep penetration welding regime, f
�
"0)5mm above the

workpiece surface; (b) shallow-penetration welding regime, f
�
"2mm.

Figure 8. Estimated terms h and G in the deep-penetration welding regime: (a) deterministic term h shown as
a vector "eld with four reconstructed deterministic trajectories superimposed; (b) random term G shown as a "eld
of parallelograms. x (t)"(I (t!0)16ms), I(t)).
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the phase portrait. Such a distribution of the estimated noise amplitude can be explained by
slower and smaller changes of the trajectory path in the region of small light intensity. The
parallelograms on the right and the left region of the phase portrait are oriented
horizontally and vertically respectively. These two regions are mainly visited by the process
trajectory during the distinct spiky patterns related to the keyhole and plasma activities,
when the trajectory makes rather large leaps per sampling interval.

In shallow-penetration welding, arrows in the vector "eld of h point on average in the
clockwise direction and indicate spiralling towards a "xed point located at x+(3)6, 3)3)
(Figure 9(a)). Indeed, the reconstructed trajectories starting at the edge of the phase portrait
both follow a spiral path terminating in the "xed point. Stability analysis of the "xed point
using a third order polynomial approximation of h yields s

���
+!0)45$2)1i. This means

that light intensity #uctuations in shallow-penetration welding can be described as random
#uctuations around a stable focus.



Figure 9. Estimated terms h and G in the shallow-penetration welding regime. (a) Deterministic term h shown
as a vector "eld with two reconstructed deterministic trajectories superimposed; (b) random term G shown as
a "eld of parallelograms. x(t)"(I(t!0)29ms), I(t)).
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The distribution of noise amplitude (Figure 9(b)) is similar to that of the deep-penetration
welding (Figure 8(b)). Notable di!erences are observed in the upper right corner, and in the
left and the right regions of the phase portrait. These di!erences can mainly be attributed
to the absence of the distinct spiky patterns in the light intensity #uctuations of
shallow-penetration welding (Figure 7).

Comparison of the estimated deterministic terms of deep and shallow-penetration
welding reveals that a transition between the two welding regimes manifests itself as
a change in the nature of the attracting "xed point. Monitoring of the eigenvalues of the
Jacobian matrix s

���
evaluated at the "xed point therefore provides the information needed

to detect this transition.
To conclude the analysis of laser-beam welding dynamics, the convergence of the

estimated h and G is examined as time step � in the conditional moments is decreased. In
Figure 10, the dependences h (�) and G (�) are shown for deep-penetration welding. Both the
deterministic h and random term G reach the "nal shape at �"0)044ms. The value of h also
remains similar for �"0)022ms, whereas the value of G changes. These results give more
con"dence in the estimate of h than in that of G. However, the short � interval of relatively
constant h indicates that the sampling rate of the light intensity #uctuations should be
increased to enable more reliable estimates of h and G. Similar conclusions are reached for
shallow-penetration welding (not shown).

3. DISCUSSION AND CONCLUSIONS

This paper discusses the possibilities for qualitative and quantitative analysis of
stochastic processes based on measured data. In the "rst part of the paper, the analysis
possibilities were presented and illustrated using synthetic datasets. In this part of the paper,
the methods were applied to experimental datasets from two regimes of turning and
CO

�
-laser-beam welding. In the turning example, the chatter-free and the chatter-cutting

regime were analyzed based on the recorded #uctuations of the cutting force. It was found
that the dynamics of the two regimes can be described as random #uctuations around
a stable "xed point and a stable limit cycle respectively. These results support the



Figure 10. Dependence of estimated terms in deep-penetration welding on the time step �. A cross-section of the
terms at x

�
+1 is shown. (a) Component of the deterministic term h; (b) component of the random term G.

x(t)"(I(t!0)16ms), I(t)).
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description of chatter onset as a Hopf bifurcation. In the CO
�
-laser-beam welding example,

deep- and shallow-penetration welding regimes were analyzed based on the recordings of
the light intensity #uctuations emitted by the welding process. The dynamics of the two
regimes were described as random #uctuations around a stable "xed point. In
deep-penetration welding the "xed point was a node, whereas in shallow-penetration
welding it was a focus. It was suggested that such a distinction between the dynamics of the
two regimes could be exploited to detect a transition between the two welding regimes.

Both processes were analyzed in a two-dimensional phase space reconstructed from
a measured scalar variable. The reasons for restricting the analyses to two dimensions are
the following. Various non-linear deterministic models of metal cutting on a macroscopic
scale suggest that cutting dynamics evolve on a low-dimensional attractor [2}4, 13],
although phase spaces of these models have four, or even in"nitely many, dimensions. The
experimental data have also been analyzed in a three-dimensional reconstructed space [5],
and the results obtained are equivalent to those quoted above. The situation is di!erent in
the case of laser-beam welding, where very little information is available about the original
phase space, the underlying deterministic attractor, their properties and dimensions. The
relation between the measured physical quantity and the process dynamics is also not clear.
It, therefore, seems reasonable to analyze data in a low-dimensional space before extending
the analysis to higher dimensions. In the present case, analysis of data in two- and
three-dimensional reconstructed spaces yielded similar results.

When there are indications that the process under inspection is chaotic, the reconstructed
phase space should certainly span more than two dimensions. In order to verify whether the
phase space dimension is su$ciently large, one should compare the reconstructed
deterministic trajectories rather than the vector "elds or their cross-sections. Once the
su$cient phase space dimension has been chosen, the trajectories will not change
signi"cantly as the dimension is further increased. In the case of the stochastic Lorenz
system in a chaotic regime analyzed in Part I of this paper [1], the reconstructed
deterministic trajectories visit both lobes of the attractor interchangeably only if the
reconstructed phase space is at least three-dimensional.

The analysis methods presented in this paper are applicable in principle only to stochastic
processes which can be described by the Langevin equation. These processes contain
uncorrelated dynamic noise which does not a!ect the process parameters. The
metal-cutting process, for example, can be modelled as a mechanical oscillatory system
in#uenced by the #ow of the non-homogeneous cut material. Other mechanical systems
which can be modelled analogously include: an airplane wing in#uenced by the air#ow
[14, 15], a vehicle system in#uenced by road conditions, etc. However, analysis of processes
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for which the relations between the physical phenomena and the terms of the Langevin
equation cannot be reliably established, may also yield information relevant for both
modelling and monitoring purposes. This shows that the methods are applicable to analysis
of stochastic data, especially when noisiness of the data cannot be neglected.
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